(1)以第1作者或唯一通讯作者在Trend Food Sci. Tech.、Crit. Rev. Food Sci.、J. Adv. Res.、Food Chem.、J. Agr. Food Chem.等相关领域期刊发表19篇SCI论文,其中2篇入选ESI 1%高被引论文(含1篇热点论文);以共同第1作者或共同通讯作者发表18篇SCI学术论文。(2)参编专著4部,获得授权发明专利4件(第1发明人2件)和实用新型专利2件(第1发明人2件),参与制定各类标准23项(第1起草人3项),开发计算机软件著作权11项(第1创作人6项)。
如下是代表性论文(#共同第一作者,*通讯作者):
[1] Xiang, L.H., Zhu, C., Qian, J.J., Zhou, X.C., Wang, M., Song, Z.S., Chen, C.S., Yu, W.Q.*, Chen, L.*, Zeng, L.T.* Positive contributions of the stem to the formation of white tea quality-related metabolites during withering. Food Chemistry, 2024, 449, 139173.
[2] Liu, C.S., Li, J.L., Li, H.X., Xue, J.H., Wang, M., Jian, G.T., Zhu, C., Zeng, L.T.* Differences in the quality of black tea (Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chemistry: X, 2023, 20: 100998.
[3] Zeng, L.T.#, Zhou, X.C.#, Fu, X.M., Hu, Y.L., Gu, D.C., Hou, X.L., Dong, F., Yang, Z.Y.* Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea (Camellia sinensis) plants. Horticulture Research, 2023, 10: uhad003.
[4] Wang, M.#, Yang, J.#, Li, J.L., Zhou, X. C., Xiao, Y.Y., Liao, Y.Y., Tang, J.C., Dong, F.*, Zeng, L.T.* Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Research International, 2022, 161: 111882.
[5] Liao, Y.Y., Zhou, X.C., Zeng, L.T.* How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Critical Reviews in Food Science and Nutrition, 2022, 62: 3751–3767.
[6] Jian, G.T.#, Jia, Y.X.#, Li, J.L., Zhou, X.C., Liao, Y.Y., Dai, G.Y., Zhou, Y., Tang, J.C., Zeng, L.T.* Elucidation of the regular emission mechanism of volatile β‑ocimene with anti-insect function from tea plants (Camellia sinensis) exposed to herbivore attack. Journal of Agricultural and Food Chemistry, 2021, 69: 11204–11215.
[7] Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.* Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159–171.
[8] Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.* Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.
[9] Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.* Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology, 2020, 106: 242–253.
[10] Zeng, L.T., Wang, X.Q., Tan, H.B., Liao, Y.Y., Xu, P., Kang, M., Dong, F., Yang, Z.Y.* Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry, 2020, 68: 3415–3424.
[11] Zeng, L.T., Watanabe, N., Yang, Z.Y.* Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59: 2321–2334.
[12] Zeng, L.T.#, Tan, H.B.#, Liao, Y.Y., Jian, G.T., Kang, M., Dong, F., Watanabe, N., Yang, Z.Y.* Increasing temperature changes the flux into the multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2019, 67: 10145–10154.
[13] Zeng, L.T.#, Wang, X.Q.#, Xiao, Y.Y., Gu, D.C., Liao, Y.Y., Xu, X.L., Jia, Y.X., Deng, R.F., Song, C.K., Yang, Z.Y.* Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2019, 67: 6541–6550.
[14] Zeng, L.T., Wang, X.W., Liao, Y.Y., Gu, D.C., Dong, F., Yang, Z.Y.* Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157: 110974.
[15] Zeng, L.T.#, Wang, X.Q.#, Dong, F., Watanabe, N., Yang, Z.Y.* Increasing postharvest high-temperatures lead to increased volatile phenylpropanoids/benzenoids accumulation in cut rose (Rosa hybrida) flowers. Postharvest Biology and Technology, 2019, 148: 68–75.
[16] Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.* Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 3899–3909.
[17] Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.* Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488–498.
[18] Zeng, L.T.#, Liao, Y.Y.#, Li, J.L., Zhou, Y., Tang, J.C., Dong, F., Yang, Z.Y.* α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Science, 2017, 264: 29–36.
[19] Zeng, L.T., Wang, X.Q., Kang, M., Dong, F., Yang, Z.Y.* Regulation of the rhythmic emission of plant volatiles by the circadian clock. International Journal of Molecular Sciences, 2017, 18: 2408.
[20] Zeng, L.T.#, Zhou, Y.#, Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.* Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011–5019.
[21] Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.* Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2019, 71: 2172–2185.
[22] Wang, X.Q.#, Zeng, L.T.#, Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.* An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 17−24.
[23] Zhou, Y.#, Zeng, L.T.#, Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.* Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses from tea manufacturing process. Food Chemistry, 2017, 231: 78–86.
[24] Zhou, Y.#, Zeng, L.T.#, Gui, J.D., Liao, Y.Y., Li, J.L., Tang, J.C., Meng, Q., Dong, F., Yang, Z.Y.* Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International, 2017, 96: 206–214.