曾兰亭 研究员/博导
职务:
电话: 020-37021938
地址: 广州市天河区兴科路723号
学历/学位: 博士
电子邮件: zenglanting@scbg.ac.cn
邮政编码: 510650
学习及工作简历:
2008.09-2012.06  海南大学 本科 
2012.09-2015.07  华南师范大学 硕士
2015.09-2018.06  中国科学院大学(中国科学院华南植物园) 博士
2018.07-2022.02  中国科学院华南植物园 特别研究助理/博士后
2022.03至今     中国科学院华南植物园 研究员
研究领域:
主要研究领域是茶树次生代谢与资源利用研究,重点开展茶叶风味品质形成与调控研究
承担科研项目情况:
社会任职:
(1) 担任Chin. Herb. Med.、Bev. Plant Res.、《茶叶学报》和《热带作物学报》青年编委;
(2) 担任J. Hazard. Mater.、Plant Biotechnol. J.、Food Chem.、J. Agr. Food Chem.等期刊审稿人。
(3) 入选广东省驻镇帮镇扶村农村科技特派员,广州市、茂名市和清远市农村科技特派员等。
(4) 作为主要导师之一参加广州市中学生“英才计划”科技特训营,指导中学生参加国家级和省级科技创新大赛,获得广东省青少年科技创新大赛二等奖、广东省科学院创新奖等荣誉,入围“明天小小科学家”奖励活动复赛。
获奖及荣誉:
(1) 潮州市农业技术推广奖一等奖(第1完成人、共19人),2023年。
(2) 潮州市农业技术推广奖一等奖(第5完成人、共15人),2022年。
(3) 第七届中国茶叶学会科技创新奖二等奖(第6完成人、共12人),2022年。
(4) 首届中国茶科技创新大赛优秀奖(第8完成人、共10人),2022年。
(5) “创新清远”科学技术奖一等奖(第1完成人、共16人),2021年。
(6) 广东省农业科学院科学技术奖一等奖(第7完成人、共15人),2021年。
(7) “创新清远”科学技术奖二等奖(第5完成人、共15人),2021年。
(8) 2019年度广东省农业技术推广奖二等奖 (第2完成人、共19人),2020年。
(9) 中国科学院广州分院优秀青年科技工作者,2022年。
(10) 第六届“中国茶叶学会优秀茶叶科技工作者”,2022年。
(11) “中国科学院优秀博士学位论文”奖,2020年。
(12) 第六届“中国茶叶学会青年科技奖”,2019年。
(13) 第五届植物生物学女科学家学术会“优秀女科学家奖”,2018年。
承担科研项目情况
(1) 广东省自然科学杰出青年基金项目,主持,2023.01-2026.12。
(2) 国家重点研发计划项目子课题,主持,2022.12-2026.11。
(3) 广东省驻镇帮镇扶村农村科技特派员项目,主持,2021.12-2024.11。
(4) 中国科学院基础前沿科学研究计划“从0到1”原始创新项目,主持,2019.09-2024.08。
(5) 中国科协青年人才托举工程项目,主持,2021.04-2022.12(已结题)。
(6) 国家自然科学基金青年科学基金项目,主持,2020.01-2022.12(已结题)。
(7) 广东省自然科学基金面上项目,主持,2019.10-2021.09(已结题)。
(8) 中国博士后科学基金面上资助一等资助项目,主持,2018.12-2020.06(已结题)。 
代表论著:

1)以第1作者或唯一通讯作者在Trend Food Sci. Tech.Crit. Rev. Food Sci.J. Adv. Res.Food Chem.J. Agr. Food Chem.等相关领域期刊发表19SCI论文其中2入选ESI 1%高被引论文(含1篇热点论文)以共同第1作者或共同通讯作者发表18SCI学术论文2)参编专著4部,获得授权发明专利4件(第1发明人2件)和实用新型专利2件(第1发明人2件),参与制定各类标准23项(第1起草人3项),开发计算机软件著作权11项(第1创作人6项)。

如下是代表性论文(#共同第一作者,*通讯作者):

[1]      Xiang, L.H., Zhu, C., Qian, J.J., Zhou, X.C., Wang, M., Song, Z.S., Chen, C.S., Yu, W.Q.*, Chen, L.*, Zeng, L.T.* Positive contributions of the stem to the formation of white tea quality-related metabolites during withering. Food Chemistry, 2024, 449, 139173.

[2]      Liu, C.S., Li, J.L., Li, H.X., Xue, J.H., Wang, M., Jian, G.T., Zhu, C., Zeng, L.T.* Differences in the quality of black tea (Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chemistry: X, 2023, 20: 100998.

[3]      Zeng, L.T.#, Zhou, X.C.#, Fu, X.M., Hu, Y.L., Gu, D.C., Hou, X.L., Dong, F., Yang, Z.Y.* Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea (Camellia sinensis) plants. Horticulture Research, 2023, 10: uhad003.

[4]      Wang, M.#, Yang, J.#, Li, J.L., Zhou, X. C., Xiao, Y.Y., Liao, Y.Y., Tang, J.C., Dong, F.*, Zeng, L.T.* Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Research International, 2022, 161: 111882.

[5]      Liao, Y.Y., Zhou, X.C., Zeng, L.T.* How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Critical Reviews in Food Science and Nutrition, 2022, 62: 3751–3767.

[6]      Jian, G.T.#, Jia, Y.X.#, Li, J.L., Zhou, X.C., Liao, Y.Y., Dai, G.Y., Zhou, Y., Tang, J.C., Zeng, L.T.* Elucidation of the regular emission mechanism of volatile βocimene with anti-insect function from tea plants (Camellia sinensis) exposed to herbivore attack. Journal of Agricultural and Food Chemistry, 2021, 69: 1120411215.

[7]      Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.* Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159–171.

[8]      Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.* Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.

[9]      Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.* Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology, 2020, 106: 242–253.

[10]  Zeng, L.T., Wang, X.Q., Tan, H.B., Liao, Y.Y., Xu, P., Kang, M., Dong, F., Yang, Z.Y.* Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry, 2020, 68: 3415–3424.

[11]  Zeng, L.T., Watanabe, N., Yang, Z.Y.* Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59: 2321–2334.

[12]  Zeng, L.T.#, Tan, H.B.#, Liao, Y.Y., Jian, G.T., Kang, M., Dong, F., Watanabe, N., Yang, Z.Y.* Increasing temperature changes the flux into the multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2019, 67: 10145–10154.

[13]  Zeng, L.T.#, Wang, X.Q.#, Xiao, Y.Y., Gu, D.C., Liao, Y.Y., Xu, X.L., Jia, Y.X., Deng, R.F., Song, C.K., Yang, Z.Y.* Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2019, 67: 65416550.

[14]  Zeng, L.T., Wang, X.W., Liao, Y.Y., Gu, D.C., Dong, F., Yang, Z.Y.* Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157: 110974.

[15]  Zeng, L.T.#, Wang, X.Q.#, Dong, F., Watanabe, N., Yang, Z.Y.* Increasing postharvest high-temperatures lead to increased volatile phenylpropanoids/benzenoids accumulation in cut rose (Rosa hybrida) flowers. Postharvest Biology and Technology, 2019, 148: 6875.

[16]  Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.* Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 38993909.

[17]  Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.* Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488498.

[18]  Zeng, L.T.#, Liao, Y.Y.#, Li, J.L., Zhou, Y., Tang, J.C., Dong, F., Yang, Z.Y.* α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Science, 2017, 264: 2936.

[19]  Zeng, L.T., Wang, X.Q., Kang, M., Dong, F., Yang, Z.Y.* Regulation of the rhythmic emission of plant volatiles by the circadian clock. International Journal of Molecular Sciences, 2017, 18: 2408.

[20]  Zeng, L.T.#, Zhou, Y.#, Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.* Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011–5019.

[21]  Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.* Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2019, 71: 2172–2185.

[22]  Wang, X.Q.#, Zeng, L.T.#, Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.* An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 1724.

[23]  Zhou, Y.#, Zeng, L.T.#, Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.* Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses from tea manufacturing process. Food Chemistry, 2017, 231: 7886.

[24]  Zhou, Y.#, Zeng, L.T.#, Gui, J.D., Liao, Y.Y., Li, J.L., Tang, J.C., Meng, Q., Dong, F., Yang, Z.Y.* Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International, 2017, 96: 206214.