杨子银 研究员/PI/博导
职务: 华南植物园副主任
电话: 020-37252582
地址: 广州市天河区兴科路723号
学历/学位: 博士
电子邮件: zyyang@scbg.ac.cn
邮政编码: 510650
学习工作简历
1998.09-2002.06  江西农业大学植物保护专业本科学习并获学士学位
2002.09-2004.07  浙江大学茶学专业硕士研究生(提前攻博)
2004.09-2007.06  浙江大学茶学专业博士研究生并获博士学位
2007.07-2009.03  日本静冈大学 博士后
2009.04-2010.03  日本静冈产业创造机构-静冈大学 JST研究员
2010.04-2012.03  日本静冈大学 JSPS外国人特别研究员
2012.04-至今    中国科学院华南植物园 研究员、中国科学院引才计划入选者
2025.05-至今     中国科学院华南植物园 副主任
研究领域:
        本研究团队主要开展茶树次生代谢与资源利用研究,针对当前茶学学科和茶产业存在的核心问题,结合自身的优势,通过多学科交叉融合,开展“茶叶品质化学与生物学基础研究”和“茶叶质量安全控制与资源高效利用研究”。茶叶品质化学与生物学基础研究方向主要开展茶树特征性次生代谢物生物合成、调控机制和生物学功能的基础理论研究。茶叶质量安全控制与资源高效利用研究方向主要从分子和生理途径发掘重要调控因子,建立安全有效改良和提升低质茶叶品质的集成技术体系。
        团队培养研究生获得中国科学院百篇优秀博士学位论文(1人次)、中国科学院院长优秀奖(1人次)、研究生国家奖学金(13人次)、中国科学院大学必和必拓奖学金(1人次)、中国科学院大学优秀毕业生称号(11人次)、中国科学院地奥一等奖学金(1人次)和二等奖学金(6人次)、中国科学院大学“三好学生标兵”荣誉称号(3人次)、中国科学院广州分院研究生报告会一等奖(2人次)、全国茶树生物学大会优秀学者报告奖一等奖(2人次)等各种荣誉称号100余次。团队成员晋升研究员1人、副研究员3人,团队成员(曾)入选/获得广东省杰出青年科学基金1人次、中国科协青年人才托举工程1人次、中国科学院青年创新促进会会员2人次、广东省现代农业产业技术体系茶叶创新团队副首席专家1人次、广州市珠江科技新星1人次、“中国茶叶学会优秀茶叶科技工作者”荣誉称号1人次、中国茶叶学会青年科技奖1人次、中国茶叶学会女科技创新奖1人次、植物生物学女科学家学术会“优秀女科学家奖”1人次等。
       如您有兴趣到本研究团队学习工作,欢迎与我们联系:zyyang@scbg.ac.cn 
社会任职
[1] 《热带亚热带植物学报》副主编
[2] 《Beverage Plant Research》副主编
[3] 《中国茶叶加工》副主编
获奖及荣誉
[1] 2012年入选中国科学院引才计划
[2] 2014年获得“2012-2013年度中国科学院广州分院、广东省科学院优秀青年科技工作者”荣誉称号
[3] 2016年获得“2016年度中国科学院广州教育基地优秀研究生导师”荣誉称号
[4] 2016年入选广东省现代农业(茶叶)产业技术体系创新团队岗位专家
[5] 2016年获得广东省杰出青年科学基金
[6] 2016年获得中国科学院广州分院“优秀青年科学家”奖
[7] 2016年入选“广东特支计划”科技创新青年拔尖人才
[8] 2019年获得国家优秀青年科学基金项目
[9] 2020年获得第五届“中国茶叶学会优秀茶叶科技工作者”荣誉称号
[10] 2020年获得“中国科学院优秀导师奖”
[11] 2021年获得中国科学院大学“领雁银奖•振翅奖”
[12] 2023年被评为中国科学院优秀党务工作者
代表论著

(#共同第一作者,*通讯作者)

 

[1] Qian, J.J.#, Zhu, C.#, Li, J.L., Yang, Y.H., Gu, D.C., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. The circadian clock gene PHYTOCLOCK1 mediates the diurnal emission of the anti-insect volatile benzyl nitrile from damaged tea (Camellia sinensis) plants. Journal of Agricultural and Food Chemistry, 2024, 72: 13284-13296.(入选ACS Editors' Choice 文章)

 

[2] Gu, D.C.#, Wu, S.H.#, Wang, Y.X., Yang, Y.H., Chen, J.M., Mao, K.Q., Liao, Y.Y., Li, J.L., Zeng, L.T., Yang, Z.Y.*. Tea green leafhopper infestations affect tea plant growth by altering the synthesis of brassinolide. Plant, Cell & Environment, 2024, 47: 3780-3796.

 

[3] Huang, Y.H., Yang, Y.H., Xue, J.H., Liao, Y.Y., Fu, X.M., Zhu, C., Li, J.L., Zeng, L.T., Yang, Z.Y.*. Biosynthetic pathway and bioactivity of vanillin, a highly abundant metabolite distributed in the root cortex of tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2024, 72: 1660-1673.

 

[4] Gu, D.C.#, Wu, S.H.#, Yu, Z.M.#, Zeng, L.T., Qian, J.J., Zhou, X.C., Yang, Z.Y.*. Involvement of histone deacetylase CsHDA2 in regulating (E)-nerolidol formation in tea (Camellia sinensis) exposed to tea green leafhopper infestation. Horticulture Research, 2022, 9: uhac158.

 

[5] Xiao, Y.Y.#, Tan, H.B.#, Huang, H.T., Yu, J.Z., Zeng, L.T., Liao, Y.Y., Wu, P., Yang, Z.Y.*. Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chemistry, 2022, 394: 133460.

 

[6] Fu, X.M., Chen, J.M., Li, J.L., Dai, G.Y., Tang, J.C., Yang, Z.Y.*. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chemistry X, 2022, 14: 100323.

 

[7] Liao, Y.Y.#, Fu, X.M.#, Zeng, L.T., Yang, Z.Y.*. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition, 2022, 62: 429-442.

 

[8] Fu, X.M., Liao, Y.Y., Cheng, S.H., Deng, R.F., Yang, Z.Y.*. Stable isotope-labeled precursor tracing reveals that L-alanine is converted to L-theanine via L-glutamate not ethylamine in tea plants in vivo. Journal of Agricultural and Food Chemistry, 2021, 69: 15354-15361.

 

[9] Yang, J.#, Gu, D.C.#, Wu, S.H., Zhou, X.C., Chen, J.M., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research, 2021, 8: 253.

 

[10] Liao, Y.Y.#, Tan, H.B.#, Jian, G.T., Zhou, X.C., Huo, L.Q., Jia, Y.X., Zeng, L.T., Yang, Z.Y.*. Herbivore-induced (Z)-3-hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry, 2021, 69: 12608-12620.

 

[11] Yang, J. #, Zhou, X.C. #, Wu, S.H., Gu, D.C., Zeng, L.T., Yang, Z.Y. *. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International, 2021, 142: 110183.

 

[12] Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.*. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159-171.

 

[13] Gu, D.C.#, Yang, J.#, Wu, S.H., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2021, 69: 1039-1048.

 

[14] Fu, X.M., Liao, Y.Y., Cheng, S.H., Xu, X.L., Grierson, D., Yang, Z.Y.*. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19: 98-108.

 

[15] Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.*. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.

 

[16] Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.*. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science and Technology, 2020, 106: 242-253.

 

[17] Yu, Z.M., Yang, Z.Y.*. Understanding different regulatory mechanisms of proteinaceous and non- proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2020, 60: 844-858.

 

[18] Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.*. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71: 2172-2185.

 

[19] Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y.*. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry, 2020, 68: 10109-10117.

 

[20] Mei, X., Xu, X.L., Yang, Z.Y.*. Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chemistry, 2020, 305: 125440.