杨子银 研究员/PI/博导
职务: 中心副主任/团队负责人
电话: 020-38072989
地址: 广州市天河区兴科路723号
学历/学位: 博士
电子邮件: zyyang@scbg.ac.cn
邮政编码: 510650
学习工作简历
1998.09-2002.06  江西农业大学植物保护专业本科学习并获学士学位 
2002.09-2004.07  浙江大学茶学专业硕士研究生(提前攻博)
2004.09-2007.06  浙江大学茶学专业博士研究生并获博士学位
2007.07-2009.03  日本静冈大学 博士后
2009.04-2010.03  日本静冈产业创造机构-静冈大学 JST研究员
2010.04-2012.03  日本静冈大学 JSPS外国人特别研究员
2012.04至今        中国科学院华南植物园 研究员、中国科学院杰出人才项目入选者
研究领域:
       Y-Tea Lab是一支年轻充满活力(Young),致力于探索中国茶奥秘(whY)的研究团队。我们的理想是“让更多的人了解中国茶,让更多的人爱上中国茶”。
       本研究团队主要研究领域是茶树特色生物学基础研究与资源可持续高效利用,针对当前茶学学科和茶产业存在的核心问题,结合自身的优势,通过多学科交叉融合,开展“茶叶品质化学与生物学基础研究”和“茶叶质量安全控制与资源高效利用研究”。茶叶品质化学与生物学基础研究方向主要开展茶树特征性次生代谢物生物合成、调控机制和生物学功能的基础理论研究。茶叶质量安全控制与资源高效利用研究方向主要从分子和生理途径发掘重要调控因子,建立安全有效改良和提升低质茶叶品质的集成技术体系。
       培养的研究生获得中国科学院百篇优秀博士学位论文1人次、第五届植物生物学女科学家学术交流会“优秀女科学家奖”1人次、中国科学院院长优秀奖1人次、教育部颁发的研究生国家奖学金12人次、中国科学院大学优秀毕业生称号8人次、中国科学院大学必和必拓奖学金1人次、中国科学院地奥二等奖学金5人次、中国科学院大学“三好学生标兵”荣誉称号3人次、中国科学院广州分院研究生报告会一等奖2人次和二等奖5人次、华南植物园研究生学术论坛一等奖6人次、第二届全国茶树生物学大会报告一等奖1人次、2018年全国“植物科学”研究生学术论坛三等奖1人次等荣誉称号。
      如您有兴趣到本研究组学习工作,欢迎与我们联系:zyyang@scbg.ac.cn。
      在《饮料植物研究》分享会回看中,有本研究团队关于“茶树次生代谢研究与茶叶品质形成调控”相关工作介绍视频和本研究团队部分实验方法的视频感兴趣的朋友可以点击链接观看(于2021年12月测试,链接有效)。 
社会任职
[1]《热带亚热带植物学报》副主编,2021年06月起。 
[2]《Beverage Plant Research》副主编,2021年-2023年。
[3]《中国茶叶加工》副主编,2021年03月-2023年03月。
[4] 中国科学院大学现代农业科学学院第一届教学委员会委员,2018年08月至今。
[5] 浙江大学农业与生物技术学院茶学系客座教授,2018年03月至2022年03月。
[6] 69个国际期刊的审稿人。
获奖及荣誉
[1]获得中国科学院大学“领雁银奖•振翅奖”,2021年。
[2]获得2020年度“中国科学院优秀导师奖”,2020年。
[3]获得第五届“中国茶叶学会优秀茶叶科技工作者”荣誉称号,2020年。
[4]获得国家自然科学基金优秀青年科学基金项目,2019年。
[5]入选广东省高层次人才特殊支持计划科技创新青年拔尖人才,2016年。
[6]获得广东省杰出青年科学基金项目,2016年。
[7]入选广东省现代农业(茶叶)产业技术体系创新团队岗位专家,2016年。
[8]获得2016年度中国科学院广州分院“优秀青年科学家”奖,2016年。
[9]获得“中国科学院广州教育基地2016年度优秀研究生导师”荣誉称号,2016年。
[10]获得“2012-2013年度中国科学院广州分院、广东省科学院优秀青年科技工作者”荣誉称号,2014年。
[11]入选中国科学院杰出人才项目,2012年。
代表论著
1)以通讯作者或第1作者在英文期刊发表学术论文80篇。(2)获得授权发明专利11件(其中第一发明人4件)和实用新型专利4件;参与制定团体标准8项和企业标准6项;参与开发软件著作权5项。
近年来本研究组主要致力于茶叶中核心品质成分香气和氨基酸形成机制的研究与调控技术的研发,一方面进一步完善茶叶品质形成的生物学基础理论,另一方面为茶叶品质安全改良提供重要支撑。如下是关于茶叶香气、氨基酸和其他代谢物相关的部分论文。
(#共同第一作者,*通讯作者)
[1]Fu, X.M., Liao, Y.Y., Cheng, S.H., Deng, R.F., Yang, Z.Y.*. Stable isotope-labeled precursor tracing reveals that L-alanine is converted to L-theanine via L-glutamate not ethylamine in tea plants in vivo. Journal of Agricultural and Food Chemistry, 2021, 69: 15354-15361.
[2]Yang, J.#, Gu, D.C.#, Wu, S.H., Zhou, X.C., Chen, J.M., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research, 2021, 8: 253.
[3]Liao, Y.Y.#, Tan, H.B.#, Jian, G.T., Zhou, X.C., Huo, L.Q., Jia, Y.X., Zeng, L.T., Yang, Z.Y.*. Herbivore-induced (Z) -3-hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry, 2021, 69: 12608-12620. 
[4]Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y. *. Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in biosynthesis of specialized metabolites. Beverage Plant Research, 2021, 1: 2. 
[5]Yang, J. #, Zhou, X.C. #, Wu, S.H., Gu, D.C., Zeng, L.T., Yang, Z.Y. *. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International, 2021, 142: 110183.
[6]Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.*. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159-171.
[7]Gu, D.C.#, Yang, J.#, Wu, S.H., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2021, 69: 1039-1048.
[8]Fu, X.M., Liao, Y.Y., Cheng, S.H., Xu, X.L., Grierson, D., Yang, Z.Y.*. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19: 98-108.
[9]Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.*. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.
[10]Liao, Y.Y.#, Fu, X.M.#, Zeng, L.T., Yang, Z.Y.*. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition, 2020, in press.
[11]Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.*. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science and Technology, 2020, 106: 242-253.
[12]Yu, Z.M., Yang, Z.Y.*. Understanding different regulatory mechanisms of proteinaceous and non- proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2020, 60: 844-858.
[13]Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.*. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71: 2172-2185.
[14]Fu, X.M.#, Cheng, S.H.#, Liao, Y.Y., Xu, X.L., Wang, X.C., Hao, X.Y., Xu, P., Dong, F., Yang, Z.Y.*. Characterization of L‑theanine hydrolase in vitro and subcellular distribution of its specific product ethylamine in tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2020, 68: 10842-10851.
[15]Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y.*. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry, 2020, 68: 10109-10117.
[16]Zeng, L.T., Wang, X.Q., Tan, H.B., Liao, Y.Y., Xu, P., Kang, M., Dong, F., Yang, Z.Y.*. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry, 2020, 68: 3415-3424.
[17]Liao, Y.Y., Zeng, L.T., Tan, H.B., Cheng, S.H., Dong, F, Yang, Z.Y.*. Biochemical pathway of benzyl nitrile derived from L-phenylalanine in tea (Camellia sinensis) and its formation in response to postharvest stresses. Journal of Agricultural and Food Chemistry, 2020, 68: 1397-1404.
[18]Mei, X., Xu, X.L., Yang, Z.Y.*. Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chemistry, 2020, 305: 125440.
[19]Li, J.L.#, Zeng, L.T.#, Liao, Y.Y., Tang, J.C.*, Yang, Z.Y.*. Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. LWT-Food Science and Technology, 2020, 122: 109023.
[20]Zeng, L.T., Watanabe, N., Yang, Z.Y.*. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59: 2321-2334.
[21]Zeng, L.T.#, Tan, H.B.#, Liao, Y.Y., Jian, G.T., Kang, M., Dong, F., Watanabe, N., Yang, Z.Y.*. Increasing temperature changes the flux into the multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2019, 67: 10145-10154.
[22]Zeng, L.T.#, Wang, X.Q.#, Xiao, Y.Y., Gu, D.C., Liao, Y.Y., Xu, X.L., Jia, Y.X., Deng, R.F., Song, C.K., Yang, Z.Y.*. Elucidation of (Z)-3-Hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2019, 67: 6541-6550.
[23]Liao, Y.Y.#, Yu, Z.M.#, Liu, X.Y., Zeng, L.T., Cheng, S.H., Li, J.L., Tang, J.C., Yang, Z.Y.*. Effect of major tea insect attack on the formation of quality-related non-volatile specialized metabolites in tea (Camellia sinensis) leaves. Journal of Agricultural and Food Chemistry, 2019, 67: 6716-6724.
[24]Cheng, S.H.#, Fu, X.M.#, Liao, Y.Y., Xu, X.L., Zeng, L.T., Tang, J.C., Li, J.L., Lai, J.H., Yang, Z.Y.*. Differential accumulation of specialized metabolite L-theanine in green and T albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry, 2019, 276: 93-100.
[25]Liao, Y.Y., Fu, X.M., Zhou, H.Y., Rao, W., Zeng, L.T., Yang, Z.Y.*. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry, 2019, 292: 204-210.
[26]Wang, X.Q.#, Zeng, L.T.#, Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.*. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 17-24.
[27]Zeng, L.T., Wang, X.W., Zeng, L., Liao, Y.Y., Gu, D.C., Dong, F., Yang, Z.Y.*. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157: 110974.
[28]Zhou, Y.#, Liu, X.Y.#, Yang, Z.Y.*. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules, 2019, 9: 808. 
[29]Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.*. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 3899-3909.
[30]Cheng, S.H.#, Fu, X.M.#, Wang, X.Q., Liao, Y.Y., Zeng, L.T., Dong, F., Yang, Z.Y.*. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2017, 65: 7210-7216.
[31]Chen, Y.Y.#, Fu, X.M.#, Mei, X., Zhou, Y., Cheng, S.H., Zeng, L.T., Dong, F., Yang, Z.Y.*. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157: 10-17.
[32]Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.*. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488-498.
[33]Zhou, Y.#, Zeng, L.T.#, Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.*. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses from tea manufacturing process. Food Chemistry, 2017, 231: 78-86.
[34]Mei, X.#, Liu, X.Y.#, Zhou, Y., Wang, X.Q., Zeng, L.T., Fu, X.M., Li, J.L., Tang, J.C., Dong, F., Yang, Z.Y.*. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry, 2017, 237: 356-363.
[35]Zeng, L.T.#, Zhou, Y.#, Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.*. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011-5019.
[36]Gui, J.D.#, Fu, X.M.#, Zhou, Y., Katsuno, T., Mei, X., Deng, R.F., Xu, X.L., Zhang, L.Y., Dong, F., Watanabe, N., Yang, Z.Y.*. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry, 2015, 63: 6905-6914. 
[37]Yang, Z.Y.#, Baldermann, S.#, Watanabe, N.*. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53: 585-599.
[38]Yang, Z.Y., Kobayashi, E., Katsuno, T., Asanuma, T., Fujimori, T., Ishikawa, T., Tomomura, M., Mochizuki, K., Watase, T., Nakamura, Y., Watanabe, N.*. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry, 2012, 135: 2268-2276.